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1 Abstract

Robotics couples many aspects of Computer, Software, and Mechanical En-
gineering. Each of these concepts must be applied in a successful robotics
platform. An investigation in the utilization of a Realtime Operating System
(RTOS) was undertaken and implemented on a self-balancing robot. A RTOS
was implemented as maintaining task priority is important for auxillary com-
putation while maintaining control of a robotics platform. Potential auxillary
computation is also discussed, and a metric is attained to understand the capa-
balities and limitations of the microcontroller unit (MCU) selected.

2 Introduction

This project consists of a MCU, acceleromter, gyroscope, magnetometer, two
brushed direct current (DC) motors, and two brushed DC motor drivers. Each of
these components play a pivotal role in maintaining platform attitude, commu-
nication, and computation. Tasking a robot can be a difficult task for computers
that are either too simple, such as lower end arduinos, but also for platforms
capable of running linux. This arises from not being able to understand a robots
state often enough, but also not properly prioritizing control of a robotics plat-
form. While control is certainly an important concept for robots, others tasks
they must execute are often nontrivial. These nontrivial tasks are often related
to navigation, sorting objects, or gathering information about an environment.
Understanding the amount of extra computational capacity can help baseline
requirements for a robotics platform to enable auxillary tasks.

2.1 The Problem

The problem of self-balancing a robot has many aspects. First, the objective
is to not fall, this is best done by maintaining upright. Knowing the angle of
inclintation of a robotics platform is best done using an Inertial Measurement
Unit (IMU). The IMU selected for this project is a BNO-055, a microelectrome-
chanical (MEMS) IMU. An angle of inclination is sensed at the location of the
IMU. From this location it is required to calculate the respective forces to apply
at the wheels. In this project we are assuming we only want to stay upright,
therefore we will assume the IMU sensed pitch value as the attitude angle to
minimize. This coordinate system will be known as IMUBody.
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Figure 1: Coordinate Systems

Implementing a robot has multiple steps. These steps include initializing all
physical states, linear and angular accelerations, velocities, and positions. From
these states it is possible to derive a force required to maintain a zero angle for
the robot. An optimal route for this robot would use Model Predictive Control.
This particular robotics platform implementation uses a Porportional Integral
Derivative (PID) controller. A PID can often be difficult to properly tune for this
nonlinear system, which was what was experienced during this implementation.
This robotics platform potentially suffered from flexible mechanical design, IMU
noise, or an imporper Pulse Width Modulation (PWM) driver. There were
many technical hurdles to address, such as implementing an I2C driver from
scratch. This process proved rather difficult, references were usually improperly
implemented, or did not use a modernized interface. This project brought an
appreciation of modern operating systems and their driver libraries.

2.2 Literature Review

Realtime Operating Systems are essential components to systems that are highly
reliant on dedicated state space control tasks. This reliance is due to the nature
of systems that are highly susceptible to instablities, such as aircraft, rockets,
submarines, and robots. The capability to handle multiple tasks, including
dedicated control tasks is ubiquitous to many software architectures involving
robotics. [1] In Principles of guidance, navigation, and control of UAVs the
authors use multiple threads to perform navigation, sensor reading, perform
research algorithms and more on a uncrewed aerial vehicle (UAV). The authors
split these tasks among multiple threads using FreeRTOS, and show through
flight test the ability to handle complex tasks while maintaining control of an
UAV. This paper discusses a similar use case for sensor sampling as for the
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platform implemented in this project, and the ability to properly design noise
filters.

Other works that show the capabilities of RTOS and control of robots largely
focus on multitasking. This multitasking centers around being able to take mul-
tiple inputs and provide multiple outputs to a robotics system as a whole. The
authors of Embedded Implementation of a Real-time Switching Controller on a
Robotic Arm show the capacity of a robotic arm to multitask. This multitask-
ing is implemented directly into the Operating System of the robotic arm, while
maintaining absolute control of the robot, performing motion planning, and
much more. The capability of this robot was all facilitated by a novel scheduler,
FreeRTOS, and a STM32F4. [2]

Each paper exhibits distinct use cases for realtime operating systems. These
use cases generally regard the ability to control a complex nonlinear system and
perform additional tasks all from a single microcontroller. While none of these
machines are particularly unique, the systems bring a unique perspective to the
complexities involved with designing software with hardware. There are rarely
physical systems in the modern world that do not require fine tuned controllers
and the ability to perform additional tasks from a single computer. Each of
the systems presented were primarily concerned with the performance of the
platform implemented and focus on the abilities of RTOSs to facilitate their use
cases. These use cases required fine tuned control and the ability to multitask,
without multitasking these systems would not be possible to implement.

3 Methods

3.1 The Hardware

As discussed the priority of this project is to self-balance a robotics platform.
To do this a certain amount of computational capability is necessary to cal-
culate states, gather sensor input using common communication methods, and
output pulse width modulated signals. The TM4C123GXL was selected to do
this, it is an evaluation kit that packages a ARM® Cortex®-M4F MCU. On
this MCU there is UART, SPI, I2C, and the potential to implement CAN com-
munication to peripheral devices. The 32-bit processor can be run at 80-MHz,
utilizing 256kB of flash, and 32kB of SRAM. The BNO-055 from Bosch Sen-
sortec combines a 14-bit accelerometer, 16-bit gyroscope, a geomagnetic sensor
and a 32-bit microcontroller for sensor fusion. These devices combined with a
high torque DC motors with encoders provide all the necessary components to
implement a self-balancing robot. [3]

There were many hardware related issues in implementing this project.
Many of which come from not starting with PCB design on Day One. Pro-
totyping often comes at the expense of risky implementations. Choosing the
breadboard prototype first method of development may lead to less costs, but
that did not turn out to be the case. Many microcontrollers through miswiring,
leaving programs running without cooling, as well as other issues required pur-
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chasing multiple MCUs. Additionally through miswiring, incorrect usage, and
mechanical failure, motor drivers and sensors also failed. Through this experi-
ence future robotics platforms should prove easier to implement. [4]

1

Figure 2: Roboto: Self-balancing Robot Mk.1

Component Name Purpose
Microcontoller TM4C123GXL Computation

Inertial Measurement Unit BNO-055 Acceleration
DC Motors Pololu Gearmotor 37D Control

DC Motor Driver DRV8256P Drives the Motors

Table 1: Bill of Materials

3.2 The Software

The software consists of four major tasks, implemented using FreeRTOS on
the MCU. Task One is to evaluate the state space equations, and verify that
the robot is upright and send motor commands if necessary, in FreeRTOS this
would be known as the ‘Control’ task. Task Two is to output all relevant state
data for an analyst to use to understand the Robots state, and possibly other
information. Task Three is to gather sensor data, the sample rate of data from
an IMU can be very noisy, it is often best to sample at a rate that reduces noise
as much as possible. Task Four is the ‘Busy’ Task. [5]

1There were many iterations of this robot. Four Microcontrollers have met their end in
developing this hardware system.
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Figure 3: Robot FreeRTOS Activity Diagram

Setting up a task is fairly simple in FreeRTOS. In the listing below shows
how a task is created, where the first argument is the method task to be used.

i f ( xTaskCreate ( state space method , ( const portCHAR ∗) ”STATE SPACE” ,
STATESPACESTACKSIZE, NULL,
tskIDLE PRIORITY + PRIORITY STATE SPACE TASK, NULL) != pdTRUE
)

{

Figure 4: FreeRTOS Task Creation

With the successful creation of this task it is possible to invoke the scheduler.
The FreeRTOS scheduler uses a priorty based preemption policy. Meaning, the
scheduler preempts tasks based on supersceding priority, as well as if task time is
available if a task is less prioritized. With this policy we have a few options, sleep
or wait for a resource to become available to reengage a tasks execution. For the
application of a robot, the choice was made to highly prioritize the control task.
FreeRTOS uses the concept of ”ticks,” which are events that are scheduled every
1000 clock cycles in the current configuration of this project. With this concept
it is possible to switch process execution at these events, and move onto another
task if available. As it is only necessary to gather sensor data at discrete time
intervals it was decided to lessen the priority of the sensor read task, and rely
on short tick intervals. Additionally limitations with I2C bus clocking provide
ample reason to sample the sensor at less intervals. As dynamical systems
are primarily continous systems, it can be difficult to approximate continous
systems on discrete systems, like computers. [6] This difficulty occurs with the
inability to gather all data at all times and apply controls at all times, possibly
with some latency. Accounting for this difficulty is best handled in Software,
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having different PID gains than you would for continous systems, implementing
multiprocessing on multiple cores, and much more.

4 Analysis

The robot prooved difficult to fully stablize, although a good grasp of the in-
terplay between FreeRTOS and Control Systems was gathered. The scheduling
policy was very useful for having assured sensor data read timing, which is
important when making calculations. While noise filters for this particular iter-
ation of the robot were not implemented, they may proove useful for an eventual
self-stabilizing robot. This platform served to investigate controls from a base
level, using a Proportional Integral Derivative Controller, which is often only
taught in simulation. Most importantly it was possible to see the impact of the
update rate of the specific process controlling the robot.

During the investigation of FreeRTOS, the impact of changing the amount
of time to delay the state space method task was shown to have system wide
effects. During this investigation it was determined that updating the control
task as often as possible was best, which aided in stablizing the robot more
continously. The update rate was gradually reduced, which required upping the
respective PID gains to have a similar effect on the robot. This effect showed
that there was a correlation in control update rate and PID gains.

From the beginning of hoping to implement this project, the correlation
between process time, controllability, and a computer operating systems were
of primary importance. With this platform and the confidence to iterate on
both the hardware and software, it should be possible to attain a stable robot,
and to gather metrics on task scheduling and the interplay of control systems.
Future work in this area will incorporate RTOSs on other platforms, that fly,
swim, and potentially go to space. Each of these capabilities will be benefitied
by knowledge gained on this project. A key metric for these capabilities, the
ability to perform auxillary tasks other than control will be crucial to their
success.
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5 Addendum

Video of Robot Operating: https://youtu.be/vgZQlqC5u8g
Code: https://github.com/MeechaelA/roboto_freertos
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